
Research Statement

William D. Taylor

My primary research area is commutative algebra, which is concerned with commutative
rings and their modules. Commutative algebra is closely related to algebraic geometry, and
many of the projects which I have worked on were inspired by, and have applications to,
geometric problems.

For example, Bézout’s Theorem states that two plane curves defined by polynomials over
a field k of degrees d and e intersect in de points, once a few mild conditions are imposed
and a notion of intersection multiplicity is defined.

y = x2 − 1

x2 + y2 = 1

For example, in the above diagram, there are two curves defined by degree two polynomi-
als. The curves intersect in simple crossings at the two blue points, corresponding to a
multiplicity of 1, and, but the red point of intersection must be counted with multiplic-
ity 2 to realize Bézout’s Theorem in this case, which predicts four interection points. To
define the multiplicity of the red point, we use the Hilbert-Samuel multiplicity of the ring
R = k[x, y]/(x2 +y2−1, x2−y−1) localized at the ideal m = (x, y+1)R, which corresponds
to the red point (0,−1). The multiplicity is the leading coefficient of the Hilbert-Samuel
function HS(n) = λ(R/mn), where λ(M) is the length of the R-module M .

Defining multiplicity, or more specifically Hilbert-Samuel multiplicity, of commutative
rings gives us a numerical measure of singularity; that is, the higher the multiplicity of a
ring, the more complicated its structure is. Much of my research considers these kinds of
numerical invariants.

Several branches of my research are focused on positive characteristic rings. When R is
a ring of prime characteristic p > 0, then we have several tools available which we don’t in
characteristic 0. In particular the Frobenius function F : R→ R given by F (x) = xp is a ring
homomorphism in this setting, which allows us to consider R as a module over itself in a new
way. This gives us new invariants and operations we can describe in positive characteristic,
many of them closely analogous to ones in characteristic zero.

My research program can be broadly categorized into three threads:

• Thresholds, including F -pure thresholds and log canonical thresholds, and their re-
lationships.
• Multiplicities, inclding Hilbert-Samuel and Hilbert-Kunz multiplicities, an interpola-

tion between them, and associated closure operations
• Comparing and contrasting various classes of ring self-maps like p−e-linear maps and

differential operators and their compatible and fixed ideals.
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Thresholds

In an early project of mine, I worked with Linquan Ma, Janet Page, Rebecca R.G., and
Wenliang Zhang to take a characteristic 0 theorem of Niu [14] and prove the analogous
statement in positive characteristic. The theorem we proved had to do with studying the
F -singularities of the generic link of an ideal.

We say that two ideals I and J of a ring R are linked if there exists a regular sequence
(a1, . . . , ac) ⊆ I such that c is the height of I and J = ((a1, . . . , ac) : I). Many properties
of I imply similar or related properties for J when the ideals are linked. Finding a regular
sequence a1, . . . , ac ⊆ I can be difficult, so as an alternate approach we can construct such
a sequence by passing to a larger ring S = R[ui,j]. Here we adjoin an appropriate number of
variables in order to take the ai to be generic combinations of the generators of I; that is,
each ai is a dot product of a row of the matrix (ui,j) with the generators of I. Now we can
take J = ((a1, . . . , ac) : IS) ⊆ S, and J is indeed linked to IS. We call J a generic link of I.

In [14], Niu shows that the canonical sheaf of S/J , which is an object carrying geometric
information about the variety S/J , can be defined in terms of the multiplier ideal J (R, Ic).
As a result he shows that lct(S, J) ≥ lct(R, I), implying that if (R, Ic) is log canonical, then
(S, J c) is log canonical.

In our paper [8], we proved the following positive characteristic version of Niu’s theorem.

Theorem 1. Suppose that R = k[x1, . . . , xn] where k is a field of characteristic p > 0,
I ⊆ R is a reduced, equidimensional ideal of height c which has a reduction which is a
complete intersection, and J is a generic link of I.

(1) τ(ωS/J) ∼= τ(R, Ic)·(S/J), where τ(ωS/J) is the parameter test submodule and τ(R, Ic)
is the test ideal of the pair (R, Ic). In parituclar, if τ(Ic) = I then S/J is F -rational.

(2) fpt(J) ≥ fpt(I). In particular, if (R, Ic) is F -pure, then (S, J c) is also F -pure.

Our work on F -singularities of generic links has inspired further research, including [7]
and [15]. Some directions for future research in this direction include the following.

Question 1: Can we remove the “has a reduction which is a complete intersection”
condition? This condtion is not present in the corresponding characteristic 0 statements
from [14], and arises from the fact that many terms in a power of a polynomial may vanish
in positive characteristic. Does this mean that we have meaningfully more complexity in
positive characteristic, or can we avoid this vanishing using a more clever construction?

Question 2: Linkage has a generalization, s-residual intersection, and we can form generic
s-residual intersections as well. The main difference is that we don’t require the regular
sequence a1, a2, . . . , as to have a length equal to the height of I. Which of the results above
hold for s-residual intersections?

Multiplicities

For a local ring (R,m) and an ideal I ⊆ R, the Hilbert-Samuel multiplicity of I is defined
to be e(I) = limn→∞ d! · λ(R/In)/nd, where d = dimR and λ(M) is the length of an R-
module M . Of particular interest is e(m), the Hilbert-Samuel multiplicity of the maximal
ideal itself, which we also denote by e(R). This value, which is always a positive integer,
carries information about the structure of the ring. For instance, if R is a regular ring, then
e(R) = 1. A classical theorem of Nagata proves that if R is equidimensional, the converse
holds as well.
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If a ring R is of positive prime characteristic p, and I ⊆ R is an ideal, then the ideal gener-
ated by elements of the form xp

e
for x ∈ I is denoted by I [p

e] and is called the eth Frobenius
power of I. The Frobenius power I [p

e] is contained in Ip
e

and is usually much smaller. The
Hilbert-Kunz multiplicity of I is eHK(I) = lime→∞ λ(R/I [p

e])/ped. Like the Hilbert-Samuel
multiplicity, the Hilbert-Kunz multiplicity is a real number at least 1, though unlike the
Hilbert-Samuel multiplicity it can be non-integer, and even irrational. The Hilbert-Kunz
multiplicity is a more sensitive measure of singularity than the Hilbert-Samuel multiplicity.
Many theorems true of Hilbert-Samuel multiplicity have analogous versions for Hilbert-Kunz
multiplicity, though the Hilbert-Kunz versions are often more difficult to prove.

Interpolating Between Multiplicities. To relate Hilbert-Samuel and Hilbert-Kunz mul-
tiplicities, I investigated a function that interpolates between the Hilbert-Samuel multiplicity
of I and the Hilbert-Kunz multiplicity of J as a positive real parameter s varies, for two
ideals I and J of a ring R. The function is defined by

es(I, J) = lim
e→∞

λ
(
R/(Idsp

ee + J [pe])
)

pedHs(d)

where Hs(d) is a normalizing function which guarantees that if R is a regular ring, then
es(m,m) = 1 for all s. In [20] I proved that this limit always exists for m-primary ideals I and
J , and established that for each s, this function satisfies many of the properties that Hilbert-
Samuel and Hilbert-Kunz multiplicities. This function does indeed interpolate between the
two multiplicities in a way that is related two two other limits in positive characteristic. In
particular, es(I, J) = eHK(J) whenever s is greater than both the dimension of the ring and
the F -threshold of I with respect to J , a value defined in [13] and proved to exist in [3]. On
the other end of the spectrum, es(I, J) = e(I) whenever s is less than both 1 and a threshold
based on a dual notion to that of the F -threshold. As a function of s, es(I, J) is continuous.

Understanding the mixed powers Idsp
ee + J [pe] which appear in the definition of the s-

multiplicity is key to proving results about the s-multiplicity and related ideas. This problem
can be attacked combinatorially, which is how I established certain upper bounds for the
s-multiplicity and proved

As part of my work I was able to provide a method for computing the s-multiplicity of
a pair of monomial ideals in toric space by expressing it as a volume in d-dimensional real
space. This construction, being very visual, helped to build intuition and understanding of
the nature of the s-multiplicity function.

I collaborated with Lance E. Miller to write two papers related to s-multiplicity. In [11], we
built upon several arguments of Watanabe and Yoshida to establish bounds for s-multiplicity
in terms of the Hilbert-Samuel and Hilbert-Kunz multiplicities. For instance, we showed that
es(I, I) is constant in s if and only if e(I, I) = eHK(I, I). If R is Cohen-Macaulay, then we
recover a significantly generalized version of a lower bound established in [22]. In particular,
if J is a parameter ideal reduction of I, then for any 1 ≤ t ≤ s, we have that

es(I) ≥
(
Ht(d)− µ(I/J∗)Ht−1(d)

Hs(d)

)
e(I).

We also examined an s-multiplicity version of a famous conjecture of Watanabe and Yoshida
concerning the minimal values of eHK(R) for singular rings. In particular, we considered the
following question: If R is a singular ring of dimension d, is it the case that es(R) ≥ es(Rd),
where Rd = k[[x0, . . . , xd]]/(

∑
i x

2
i )? We were able to establish a positive answer to this



4

question in the Cohen-Macaulay case in dimension 3 or less and in the complete intersection
case when p ≥ 3.

In [10], we examined the values `(pe) = λ(R/(mdsp
ee + m[pe])) for R = k[X]/I2(X), where

X is a matrix of indeterminates and I2(X) is the ideal generated by all 2× 2 minors of X.
We were expanding upon the results appearing in [9] and [17] on the Hilbert-Kunz function.
Using Gröbner bases and combinatorial arguments, we derived a closed form for `(pe). Two
consequences of this result are a way of calculating the s-multiplicity of 2× 2 determinantal
rings by examining the leading term of this closed form, and a proof that if s ∈ Z[p−1],
then `(pe) is eventually polynomial in pe. This second result is notable since in general
the Hilbert-Samuel function λ(R/mn) is a polynomial in n but the Hilbert-Kunz function
λ(R/m[pe]) is not a polynomial in pe.

s-Closures. Hilbert-Samuel multiplicity is closely related to integral closure of ideals, and
Hilbert-Kunz multiplicity is closely related to tight closure of ideals, so it was natural
to search for a family of closure operators that would be related in the same way to s-
multiplicity. I began studying these closures in [20] and continued in [21].

The most straightforward definition of an operator related to the s-multiplicity is to define
that x ∈ I{s} if there exists some c not in any minimal prime of R such that for all e� 0, we
have that cxp

e ∈ Idspee+I [pe]. We call this operation weak s-closure. Weak 1-closure is integral
closure, and for large s, weak s-closure is tight closure. However, for intermediate values of s
it is not obvious that this operation is idempotent, i.e. it isn’t clear that (I{s}){s} = I{s}. AS
we work in noetherian rings, we can define a true closure operation by defining the s-closure
of I to be the ideal we obtain my applying the weak s-closure repeatedly until the ideal
stabilizes. We denote the s-closure of I by Icls .

In [20], I proved that if x ∈ Icls , then es((I, x), (I, x)) = es(I, I), recovering the analogous
statement for Hilbert-Samuel (resp. Hilbert-Kunz) multiplicity and integral (resp. tight)
closure. Also interesting is the converse direction: if J ⊆ I and es(J, J) = es(I, I), does
Jcls = Icls? I was able to prove this via a theorem of Polstra and Tucker in [16] in the
case that the ring R is an F -finite complete domain. In [21], I extended this to the F -finite
complete unmixed case by proving that membership in the s-closure can be checked modulo
minimal primes and using the Associativity Formula for s-multiplicity from my previous
paper:

es(I, J) =
∑

p∈Assh R

es(I(R/p), J(R/p))λRp(Rp),

where Assh R denotes the set of prime ideals p ⊆ R such that dimR/p = dimR.
Also in [21], I established several important results regarding the structure of s-closure. In

the case of graded rings, and inspired by work of Smith in [19], I showed that the s-closure of
a graded ideal is graded and in certain cases gave necessary and sufficient degree conditions
for an element to be contained in the s-closure. I also showed that several common conditions
on ideals guarantee that the weak s-closure is the s-closure. For instance, if I is principal, a
monomial ideal, or a power of the ideal of positively graded elements in an N-graded ring,
then I{s} = Icls for all s.

I also generalized the Hochster-Huneke version of the Briano̧n-Skoda Theorem in [4] re-
lating integral and tight closure to the case of two s-closures.

Theorem 2. Let R be a ring, 1 ≤ t < s, and I an ideal of R. If r ≥ (µ(I)−1)(s−t)
t(s−1) , then for

all n ∈ N, (In+r){t} ⊆ (In){s}.
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The well-known Briano̧n-Skoda Theorem corresponds to the case t = 1, s = d.
Natural questions for future research regarding s-multiplicity and s-closures include the

following.
Question 1: Can we use the fact that Lech’s Conjecture holds for Hilbert-Kunz multiplic-

ity and the continuously interpolating nature of es(I, J) to conclude that Lech’s Conjecture
holds in more cases? As a first step in that direction, can we reduce the conjecture to a
more tractable problem based on the interpolation? Lech’s Conjecture is one of the longest
standing open problems in commutative algebra and even partial results are interesting.

Question 2: If es(m,m) = 1 for some s ≥ 0, is the ring regular? This question is based on
the fact that for a reasonably nice ring (equidimensional is sufficient), if either the Hilbert-
Samuel or the Hilbert-Kunz multiplicities are equal to 1, then the ring is regular. I would
like to know if it suffices for the s-multiplicity to be 1 for any s.

Question 3: Is there a natural way to extend the notion of s-multiplicity to non-m-
primary ideals? There have been several explorations of how to define Hilbert-Samuel and
Hilbert-Kunz multiplicities for non-m-primary ideals. If I could find a reasonable, natural
way to extend s-multiplicity to those cases as well, it could provide a unifying context to
work in. A possible first step is to examine what happens when only one of I and J are
m-primary. The existence of the limit defining es(I, J) can still be shown in broad cases
using a theorem of Polstra and Tucker in [16], so this may provide some insight.

Differential Operators

If R is a commutative ring with prime characteristic p > 0, then there are several classes
of F -singularities we define. This work began with a celebrated theorem of Kunz ([6]) which
shows that R is a regular ring if and only if R is a free R-module under the Frobenius action
defined by r · x = rpx. Weakening the condition of being a free module gives the various
F -singularities. For instance, R is called F -pure if R contains at least one copy of itself as
a module under the Frobenius action, and R is called strongly F -regular if

Given a commutative ring R with characteristic p > 0, a p−e-linear map is an additive
function ϕ : R → R such that ϕ(xpy) = xϕ(y) for all x, y ∈ R. These maps are used to
define several singularities in positive characteristic. For example, a ring R is called strongly
F -regular if, for every x ∈ R, if x is not in a minimal prime of R, then there exists e ≥ 0
and a p−e-linear map ϕ such that ϕ(x) = 1. An equivalent way to express this condition is
that there is no nonzero proper ideal I of R such that ϕ(I) ⊆ I for all p−e-linear maps ϕ.
This gives us motivation to study ideals fixed by p−e-linear maps.

Ideals Fixed by Maps. In [5], the authors study this question for toric ideals. For our
purposes, we may treat these as monmomial ideals in k-algebras generated by a set of
monomials. In [5], the authors show that in this setting, for a p−e-linear map ϕ, there are
a nonempty finite collection of ideals I that are ϕ-fixed. Furthermore, these ideals have a
very special structure; most monomial ideals are not fixed by any p−e-linear map.

Recent results in [2] showed that differential operators can be used to define signatures, i.e.
numerical measures of singularities, just as p−e-linear maps can. This inspired Lance Edward
Miller, Janet Vassilev, and I to ask which toric ideals are fixed by differential operators. We
were able to prove the following theorem, which was unexpected given the analogy we were
inspired by. In this theorem we use a description of the differential operators on a complex
toric ring given by Saito and Traves in [18]. Here δ is a differential operator of multidegree
d, and f ∈ C[x1, . . . , xd] is a polynomial such that for any monomial xa, we have that
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δ(xa) = f(a) · xa+d. The set Vmon(f) is the set of lattice points a with f(a) = 0, and for
any lattice point a, ν(a) is a function which essentially measures how far you have to travel
starting at a to reach the first point in Vmon(f) which lies on the line parallel to the vector
d. The function ν ′ is a shift of ν for technical reasons.

Theorem 3. [12] Let R = C[S] be an affine semigroup ring defined by a cone σ∨, I ⊆ R
a proper monomial ideal, and d ∈ Zd such that −d ∈ S. Set e ∈ Zd primitive such that
d = qe for some q ∈ N.

• There exists a homogeneous differential operator δ of degree d such that I is δ-fixed.
• If −d ∈ intσ∨, then δ fixes a monomial ideal I if and only if

(1) ν(a) > −∞ for all a ∈ S,
(2) for all a ∈ V ′mon(f) and i = 0, . . . , q − 1, a− ie ∈ Vmon(f), and
(3) for every a,b ∈ V ′mon(f), a− b /∈ S − e.

In this case, δ fixes only one ideal I with ExpI = {a ∈ S | ν ′(a) ≥ 0}.

The theorem above is constructive and quite explicit. We observed that in contrast to
the p−e-linear case, most differential operators don’t fix any ideals, and those that do will
typically fix only one. On the other hand, and even more unexpected, we find that every
monomial ideal is fixed by a family of differential operators.

The theorem shows that the data of an ideal, such as whether it is the unit ideal, is
determined by one of the differential operators fixing it. This opens up the possibility
to detect properties of an ideal by examining a differential operator. We developed an
example to demonstrate this technique by showing that we can calculate the log canonical
threshold of an ideal by constructing a family of differential operators and measuring which
of these differential operators have the monomial 1 in their image. We approched this by
first providing a general construction which gives a differential operator which fixes an ideal
defined by a polyhedron or union of polyhedra. Specifically, if P is a polyhedron in the
cone σ∨, and IP is the ideal whose exponent set is the set of lattice points in P , then
we can construct a differential operator δ fixing I. By constructing a family of polytopes
Pc corresponding to the multiplier ideals of pairs (R, Ic), we have a family of differential
operators δc fixing the multiplier ideals. We can then use δc to detect which of these multiplier
ideals are proper, and the least such c is the log canonical threshold of I.

There are several questions which naturally arise from this line of research.
Question 1: How can we develop a similar theory in positive characteristic? The Saito-

Traves description of differential operators only holds over the complex numbers, and the
structure of the differential operators in positive characteristic is more complicated. Even
computing families of examples in polynomial rings over finite fields would be helpful in
developing the theory.

Question 2: Given a monomial ideal I, what is the least order of a differential operator
which fixes I? This is related to the degree of the polynomial defining a given differential
operator. Providing such bounds will be important for making any computational approach
towards this problem efficient.

Question 3: What can we say about the non-normal case? All the toric rings we have
studied so far have been normal, but differential operators over non-normal semigroup rings
have been described and studied in [1], so it should be possible to extend our results to that
setting.

Question 4: Can we describe ideals fixed by non-homogenous differential operators?
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Question 5: Can we describe a general theory of self-maps which includes differential
operators, p−e-linear maps, and similar, and prove more general results? Lance Miller and
I have already begun discussing this question in some depth and are working on a project
which will make progress toward answering this question.
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