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3 The Test Ideal

In this section, all rings are domains essentially finite type over a perfect field
k of characteristic p > 0.

3.1 Test ideals of map-pairs

We begin by defining an ideal that caputes information about the ring R and an
R-module homomorphism. For ¢ € Homg(RY?"| R), let 7(R, ¢) be the smallest
nonzero ideal J such that ¢(J'/?°) C J. Tt is nonobvious that such an ideal
exists, but we will have a method of constructing it. If an ideal I C R is such
that ¢(I'/P") C I, we say that I is ¢-compatible.

Exercise 3.3. ¢(7(R,$)""") = 7(R, ¢).

Solution. By definition, 7(R, ¢) is ¢-compatible, so ¢(7(R, (b)l/pﬁ) C 7(R,9).
Applying F¢ and then ¢ to both sides, we get that

S((B(r(R, )" N C o(r (R, 0)'P),

proving that ¢(r(R,¢)"/”") is ¢-compatible. Hence 7(R,) C ¢(r(R,¢)'""),
and so the two are equal. O

Exercise 3.4. Suppose that ¢ : R'/P° — R is surjective. Then 7(R,¢) is
radical and R/7(R, ¢) is F-pure.

Solution. Suppose € R such that zP° € T(R, ¢). Then since ¢ is surjective,

z € (Rl/f) =4 (m . Rl/pe) — ¢ ((xpeR)l/pe) C ¢ (T(R, (;s)W‘) = 7(R, ).



Now for any n > 1, suppose z™ € 7(R, ¢). Then n < p*© for some ¢ € N, and
so 27" € 7(R, ¢), which implies that T € T(R, ¢), and proceeding for ¢
steps, © = 2’ € T(R, ¢), and so 7(R, ¢) is radical.

Let d € R such that ¢(d'/?") = 1. Let ¢ : RY/?" — R/7(R, ¢) be given by
o(r1/P°) = ¢((dr)"'"") + 7(R, ¢). Since ¢((d7(R,$))"/"") C 7(R, ), we have
that 7(R, qﬁ)l/pe C kert). Therefore we can construct 1 : RY/?° /T(R,gb)l/pe —
R/7(R, ¢) given by (r'/?" + (R, ¢)1/pe) = (r1/?"). Now

S £ 7 (R, ¢)VPT) = p(1V/7°) = $(dV/P°) = 1+ 7(R, ).
Therfore 1) is an F-splitting for R/7(R, ¢). O
Exercise 3.5. Suppose that R = Fy[z,y], then RY/?2 = ROR-z/?®R-y'/?
R (zy)'/2.
Part a) Let o : RY/2 — R be given by a((zy)*/?) =1 and a(1) = a(z'/?) =
a(y'/?) = 0. Then 7(R,a) = R.

Solution. For a monomial z™y™ € R, al(z™y") is 2™ ~1/29("=1)/2 (with degree
m;" —1) if m and n are odd and 0 otherwise. In particular, if f # 0 has degree

d, then a( f1/?) is either zero or nonzero of degree less than or equal to %— 1<d.
Let J be a nonzero ideal of R and let f € J be a nonzero polynomial in J of
minimal degree d.

If a(f/?) # 0, then a(f'/?) is of degree less than the degree of f, so is not
in J, hence J is not a-compatible.

If a(f'/2) = 0, then all terms of f are of the form z™y" with m and n not
both odd. Therefore either x f, yf, or xyf has a term with the powers on x and
y both odd, call such a multiple g. Then g € J, a(g'/?) # 0, and the degree of
g is at most d + 2. Therefore a(g'/?) has degree at most % —-1= g. Ifd >0,
then ¢ < d and so a(g*/2) ¢ J, so J is not a-compatible. If d = 0, then f is a
constant and J = R. Therefore the only nonzero a-compatible ideal of R is R,
and so 7(R, ¢) = R. O

Part b) Let 3 : R'/?2 — R be given by B(z'/2) = 1 and B(1) = B(y'/?) =
B((xy)'/?) = 0. Then 7(R, B) = (y).

Solution. For a monomial z™y" € R, B(z™y") is 2™~ D/2¢y"/2 (with degree
%"_1) if m is odd and n is even and 0 otherwise. In particular, if f # 0 has
degree d, then B(f1/2) is either zero or nonzero of degree at most % < d. Let
J be a nonzero ideal of R and let f € J be a nonzero polynomial in J of minimal
degree d.

If B(f1/?) # 0, then B(f'/?) is of degree less than the degree of f, so is not
in J, hence J is not S-compatible.

If B(f'/?) = 0, then all terms of f are of the form 2™y" with either m even
or n odd. Therefore either xf, yf, or xyf has a term with the power on x odd
and the power on y even.



Suppose that xf or yf has some term with the power on = odd and the
power on y even and call this multiple g. Then g € J, 3(g'/?) # 0, and the
degree of g is d + 1. Therefore 5(g'/?) has degree at most =l =4 Jfd >0,
then % < d and so f(g*/?) ¢ J, so J is not B-compatible. If d = 0, then f is a
constant and J = R.

Now suppose that neither x f or yf has some term with the power on x odd
and the power on y even. Then every term of f must have even power on x
and odd power on y. In this case zyf has all terms with the power on z even
and the power on y odd, call this multiple g. Then the degree of g is d + 2.
Then $(g'/?) has degree at most % = %. If d > 1, then % < d, and
so B(g'/?) ¢ J, so J is not B-compatible. If d = 1, then since every power of
f must have even power on z and odd power on y we must have that f = y.
Therefore if J is a proper S-compatible ideal then J must contain y.

We finish by showing that (y) is S-compatible. Suppose f € (y). Then the
terms of f1/2 that are not killed by 3 are the ones that have odd degree in x
and the even degree at least 2 in y, call the sum of the terms of this form g.
Then we can write g = y2h for some h € Fo[z,y]. So B(f1/?) = B((y*h)'/?) =
Bly - h'/?) = yB(h'/?) € (y). So (y) is B-compatible.

Therefore 7(R, 8) = (y). O

Part c¢) Let v : R'/? — R be given by v(1'/2) = 1 and B(z'/?) = B(y'/?) =
B((xy)'/?) = 0. Then 7(R,v) = (zy).

Solution. For a monomial z™y" € R, v(z™y") is 2™/2y"/2 (with degree ™)
if m and n are even and 0 otherwise. In particular, if f # 0 has degree d, then
'y(fl/z) is either zero or nonzero of degree at most %. Let J be a nonzero ideal
of R and let f € J be a nonzero polynomial in J of minimal degree d.

If v(f1/%) # 0, then v(f%/?) is of degree 4. If d > 0, then this is less than
the degree of f, so v(f/?) is not in .J, hence .J is not y-compatible. If d = 0,
then f is a constant, so J = R.

If y(f'/?) = 0, then all terms of f are of the form z™y" with m and n not
both even. Therefore either zf, yf, or xyf has a term with the powers on =
and y both even.

Suppose that zf or yf has some term with the powers on = and y both
even and call this multiple g. Then g € J, 7(91/2) # 0, and the degree of ¢ is
d + 1. Therefore v(g'/?) has degree at most %. If d > 1, then % < d and so
v(g'/?) ¢ J, so J is not y-compatible. If d = 1, then f = z or f = 3, and so
xy € J. The case d = 0 is impossible.

Now suppose that neither x f or y f has some term with the powers on x and
y both even. Then every term of f must have odd powers on x and y. In this
case zy f has all terms with the powers on x and y both even, call this multiple
g. Then the degree of g is d+2, and 7(g'/?) has degree at most (in fact exactly)
%. If d > 2, then % < d, and so y(g'/?) ¢ J, so J is not B-compatible. The
cases d = 0 and d = 1 are impossible. If d = 2, then since every power of f
must have odd powers on = and y we must have that f = xy. Therefore if J is
a proper y-compatible ideal then J must contain xy.



We finish by showing that (xy) is y-compatible. Suppose f € (zy). Then
the terms of f1/2 that are not killed by ~ are the ones that have even degrees at
least 2 in x and y, call the sum of the terms of this form g. Then we can write
g = 2%y?h for some h € Fylz,y]. So v(fY/?) = v((x®y*h)Y/?) = y(zy - h'/?) =
zyy(h'/?) € (xy). So (zy) is y-compatible. O

The question of whether such an ideal 7(R,¢) exists is answered in the
affirmative by Lemma 3.6 and Theorem 3.8.

Lemma 3.6. Suppose that ¢ : R/? — R is a nonzero R-module homomor-
phism. Then there exists nonzero ¢ € R such that for all nonzero d € R, there
exists n > 0 such that ¢ € ¢" ((dR)'/?™").

In the above lemma, ¢™ is the composition

1/p(n—1)e ¢1/p(n72)e $L/7°

RYPC . plpnThe R/P° # R.

We call an element c satisfying the conditions of Lemma 3.6 a test element for

o.

Theorem 3.8. Fix any ¢ € R a test element for ¢. Then

(R, 6) = > " ((eR)™)

e>0
Here, by ¢° we mean the identity map R — R.

Proof. Let T =% -, ¢" ((cR)l/p"e). Now ¢(TV/P) =3 o, o™ ((cR)l/p"e), S0
T is ¢-compatible. If I is any ¢-compatible ideal, then there exists a nonzero
d € I, and so since c satisfies the condition of Lemma 3.6, there exists n € N
such that ¢ € ¢"((dR)Y/?""). But also,

o (AR ) C o (M) con (1) co o (1) C

and so ¢ € I. But then for any n € N, ¢" ((cR)P"") C ¢" (I'/?") C I as
above. Therefore T' C I. Therefore T is the smallest ¢-compatible ideal of R,
ie. T =71(R,9). O

Exercise 3.9. 7(R,¢) = 7(R, ¢™) for any m > 0.

Solution. Let ¢ € R be a test element for ¢™. Let 0 # d € R, and choose n > 0
such that ¢ € (¢™)" ((dR)V/?""™) = ¢™" ((dR)Y/P"""). Therefore c is a test
element for ¢.

We have that

7(R,6) = Y 6" ((eR)V7" ) and r(R,0™) = 37 ™ ((er)/7"").

e>0 e>0



Since every term in the sum for 7(R, ¢™) is also a term of the sum for 7(R, ¢),
we have that 7(R,¢™) C 7(R, ¢).
We claim that for all n, ¢ ((cR)'/?"") contains a nonzero element. Let k € N

such that ¢ € ¢*((cR)"/?"). Then
R C ¢*((cR)VP") C ¢ ((cR)/P") C -

so for any j € N, c € qbkj((cR)l/pkjE) and so q[)kj((cR)l/pkjE) # 0. Now for any
n € N, there exists j € N such that kj > n, and so since

0 (R = g7 (6T (R T))

we must have that ¢"((cR)/?"") # 0.

Therefore we can pick 0 # d; € (ﬁj((cR)/lee) for j = 1,2,...,m. Let
d = [[;d;. Then d € d)j((cR)/lpje) for j = 1,2,...,m. Let n € N, and
choose k € N such that ¢ € ¢k((dR)1/pke. Then pick j in {1,...,m} such that
n+k+j=0 mod m. Now

(n+k+j)e

an((CR)l/pne) C ¢n+k((dR)1/p(nk)€) C ¢n+k+j((cR)1/p ’
but the term on the right is a summand of 7(R, ¢™). Therefore ¢"((cR)'/?"") C
T(R, ¢™), and since n was arbitrary, this shows that 7(R, ¢) C 7(R, ¢™). O
Exercise 3.10. If W is a multiplicative system of R and ¢ € Homg(R'/?", R),
then (W LR, W~1¢) = W—'r(R, §).

Solution. Let ¢ € R be a test element for ¢. Let 0 # 4 € (W~1R). Then d # 0,
and so there exists n € N such that ¢ € ¢"((dR)*/?""). Then

wror ((Lwn)™)

—(wlo) (Wi am) ")
=Wty (W @r)”")
:W—1¢n ((dR)l/P"E)

9C
1.



c

T is a test element for WL, Hence,

vt = Yot ((wm) )

n>0

Therefore

n>0

=S wlgr ((cR)l/p""‘)

n>0

=Wy o ((em))

n>0

=W~ r(R, ¢).

Exercise 3.11. Let ¢ be a test element for ¢ € Homg(RY?", R), let Jy = cR
and forn > 1, J, = J,—1 + qb(J,ll/_plf). Then for n > 0, J,, = 7(R, ¢).

Solution. Note that the chain of ideals Jy C J; C --- is increasing. Therefore,

since R is noetherian, J, = J,4; = --- for some n > 0. Therefore J, =
Jn + q&(]nl/pe) and therefore zj)(J,lL/p ) C Jp, le. J, is ¢-compatible. Hence
Jn 2 7(R, 9).

Now Jy = cR C 7(R, ¢), and 7(R, ¢) is ¢-compatible. If J, C 7(R, ¢), then

Jirr = Ji+ 0(17) S 7(R,0) + 6(7(R,0)'7") = 7(R, 0).
Therefore, by induction, J,, C 7(R, ¢), and so J,, = 7(R, ¢). O

3.2 Test ideals of rings

We can define an ideal depending only on the ring structure of R by simul-
taineously considering all homomorphisms ¢ € Homg(RY?", R). To be precise,
we define the test ideal of R, denoted 7(R), to be the smallest nonzero ideal J
such that J C ¢(J'/?") for all e > 0 and ¢ € Hompg(R'?", R).

Exercise 3.13. If S = k[z1,...,x,], then 7(S) = S.

Solution. We will show that if J is any nonzero ideal of S then there exists
e >0 and ¢ € Homg(R'Y?", R) such that ¢(J'/P") = S, which will prove the
statement. Let J be a nonzero ideal of S, and let 0 # f € J. Choose e > 0 such
that p° is greater than the highest power of any single variable that appears
in f. By exercise 2.1, S*/?" is a free S-module with basis xi‘l/pe X ~xi}"/pe for
0 < X\ < p°—1. Then the monomials of f1/7° are S-linearly independent

in SY/P°. Choose an exponenet vector (01,...,¢y) such that the coefficient of
2t alis ag # 0. Let ¢ 1 SY/P° — S be given by ¢z} /" - alp /Py = L

n ayp
and ¢(z) /" - ah /Py = 0 for (A1,..., An) # (€1,...,4y). Then ¢(F1/7°) =1,
and so ¢(J'/P°) = S. O



We have an explicit construction of 7(R) as we did for 7(R, ¢).

Theorem 3.14. Fix any ¢ € Hompz(R'/?", R) and ¢ a test element for ¢. Then

T(R) =Y 3 " ((cR)l/”e> .

e>0 ycHomp (R1/7° R)

Proof. Let J be any nonzero ideal of R for which ¢(J'/P") C J for all e > 0
and ¢ € Homp(RY?" | R). Let 0 # d € J, then there exists n € N such that

c=o" ((@r)/7") Com (117) C .

Therefore ¢ € J, and so

>0 u(en)

€20 ¢ cHomp (RY/?° R)

e>0
e>0

N

(]

()

YEHomp (RY/?° R)

N

J

(]

yEHomp (RY/?°,R)
=J

Therefore the given sum is indeed 7(R). O

Exercise 3.15. For any multiplicative system W of R, 7(W~1R) = W~17(R).
Solution. As in exercise 3.10, for a fixed e > 0 and ¢ € Homg(RY?" R),if cis a

test element for ¢ then § is a test element for W~1¢ € HomwflR((W_lR)l/p, W-LR).
Let H = Homy—1 z((W-1R)"/"", W~1R). Then

wmey S (G wn)™)

e>0 W-1ypeH

=3 > W) (W er))

e>0 W-1ypeH

= X wil(en'r)

e>0 ycHomp(RY/?° R)
Wy e(em)
e>0 ¢ycHomp (RY/P¢,R)
=W~ r(R). O

Exercise 3.17. Suppose that R is F-pure. Then 7(R) is radical and R/7(R)
is F-pure.



Solution. There exists a splitting ¢ : RY/? — R of the inclusion R C R'/?.
Suppose that = € R such that z'/? € 7(R). Then

z = ¢((a?)"/") C ¢(r(R)"/?) C 7(R).

Therefore 7(R) is radical.

Define ¢ : RY? — R/7(R) by (r'/?) = ¢(r'/P) + 7(R). Then r'/P ¢
ker 1 if and only if ¢(r'/?) € 7(R), and so we have that ker D T(R)l/p since
#(7(R)"/?) C 7(R). Therefore we can construct ¢ : R/?/7(R)"/* — R/7(R) as
D(rt/P 4 T(R)l/p) =1 (r'/P). Now

P(AYP 4 7(R)MP) = p(11/?7) = $(1Y/7) + 7(R) = 1 + 7(R),

so v is an F-splitting of R/7(R). O

Exercise 3.18. Suppose R is reduced and let RY be its normalization. Let ¢
be the conductor of R in RY, that is, ¢ = Anng(RY/R) = (R :g RY) (¢ can
also be described as the largest ideal of RY which is also an ideal of R). Then
7(R) Cc.

Solution. Let e > 0 and ¢ € Homp(RY?", R). Take = € RN and = € ¢. Then £
has an equation of integral dependence

r\m ryn—1 r
(*) —+ aq (*) + -t ap_1 (*)—Fan:O
S S S

with a; € R. Raising this to the p°th power gives us an equation of integral
P
dependence for

pe
’I“pe n » Tpe n—1 » ’I“pe .
(W) +CL1 (spe) +...+an_1 (spe) +a£ =0.
. N arP” . e e ,
Since z € (R :g R"), we have that - € R,ie. zr? =z'sP for some 2’ € R.
s
Therefore,
e T e 1/ e 1 e 1/ e 1 1/p¢. S 1/p°¢

d)(xl/p )g = ¢((xr?) p ); = ¢((a's"") P )g = (' /p ); = ¢z’ /p )ER

Therefore ¢(z'/?°) € ¢, hence ¢(c'/P") C ¢, i.e. ¢ is ¢-compatible, and so we
have that ¢ 2 7(R). O

The result of the computation in Exercise 3.13 can be extended to a charac-
terization of when 7(R) = R:

Theorem 3.19. Suppose R is a domain essentially of finite type over a perfect
field k. Then 7(R) = R if and only if for every 0 # ¢ € R, there exists e > 1
and ¢ € Homp(R'/?", R) such that ¢(c'/P") = 1.



The paper leaves only one step to us: to reduce to the case where R is
local. Consider the R-module R/7(R). This module is 0 (ie. 7(R) = R) if
and only if (R/7(R))m = 0 for all maximal ideals m of R. However, since
(R/T(R))m = R /T(R)m = R /7(Ru), it suffices to consider the case where R
is a local ring with maximal ideal m.

We call a ring R such that 7(R) = R a strongly F-regular ring.

Theorem 3.21. A regular ring is strongly F-regular.
Exercise 3.22. A strongly F-regular ring is Cohen-Macaulay

Exercise 3.23. Suppose that R C S is a split inclusion of normal domains
and S is strongly F-regular. Then R is strongly F-regular and hence Cohen-
Macaulay.

Solution. Let s : S — R be a splitting map for the inclusion R C S. Let
0 #c € R Then 0 # ¢ € S, and so since S is strongly F-regular, there
exists ¢ € Homg(S'/?",S) such that ¢(c'/P") = 1. Since ¢ is an S-module
homomorphism it is also an R-module homomorphism, so the map ¢|gi/,c €
Homp(R'/?",S) is an R-module homomorphism. Now let 1) = 50| gi/pc. Then
Y € Hompg(RY?", R) and 9(c'/?") = 1. Therefore R is strongly F-regular. By
Exercise 3.22, then, R is Cohen-Macaulay. O

3.3 Test ideals in Gorenstein local rings

Exercise 3.26. Suppose that S = k[x1,...,2,], where k is a perfect field, and
consider the S-linear map ¥ : S/7° — § sending (z1 - - - 2,)® ~Y/P" to 1 and
all other basis elements (ch\l ---xfbn)l/pe, 0 <X\ < p®—1tozero. Then ¥
generates Homg(S/?°, S) as an S'/P"-module.

Note! There is a typo in the original paper, which states that U generates
Homg (S'/P°,S) as an S-module, which can easily be shown false.

Solution. Let ¢ € Homg(S'/?",S). Then for every tuple (A,...,\,) with 0 <
Ai < p® — 1, there exists a(A1,...,A,) € S such that ¢ takes the basis element
(z}r - 22?0 a(A, ..., An). We claim that

¢ p° e 1/p®
be T (N )

0<Ai<pe—1

Recall that the action of S'/P° on Homg(S'/?",S) is by premultiplication;
that is, for s'/7° € /7" and ¢ € Homg(S'/?",S), we have that s/?" . ¢ €
Homg(SY/?", ) is given by (sV/P° - o) (x/P") = o(s¥/P 21/P") = o((sz)"/"").
We now prove the above equality by checking that they act equivalently on



basis elements. Let (A},...,A%) be a tuple with 0 < A; < p® — 1. Then

e e e 1/p°® * « 1/p°
Z (a()‘la'“;)\n)p A _1_’\"> v ((xi\lii") p)

0N <pe—1
e * e «\ 1/p°
e pe—1-A14A —An+X
= E \I!<<a()\1,...,)\n)p oy AL g A “) >
0<Ai<pe—1
e * e «\ 1/p°
pe—1-X1+A P —An+AL
= E a(A1, ..., \)T ((ml AL P ) )
0<A;<pc—1

. “ . «\ 1/p°
—1-A14+A “AntA . .
P R I ") is nonzero if

By construction, the term ¥ ((xl

and only if each p® — 1 — A\; + A} is congruent to p¢ — 1 modulo p®. Since
0 < A, A7 < p®—1, we have that 0 < p® —1 — \; + A\F < 2p® — 2. Therefore
this term is nonzero exactly when p® —1 — A\; + A7 =p° — 1, i.e. when \; = A},
Therefore

€e_1— * e_ * 1/pe
3 A AT ((xfl’ Mg hee) >

0<A;<pe—1
e e 1/p°
=a(A],..., AP ((aj’f “hogp 71) )
:a( T""’A’Tl)

—o (i) "),

Therefore the claim is proved, and so ¥ generates Homg(S'/?", S) as an S1/7"-
module. By Lemma 3.24, ®% also generates Homg (S/?°, S) as an S'/?"-module.
Also,

Homg (S/?", S) = Homg(S'/?", wg) = (ws)l/pe S

and so we have that Homg(S'/?", S) is a faithful cyclic module. Since any two
generators of a faithful cyclic module differ by a unit, we have that ¥ and ®%
are identical up to multplication by a unit in S1/?°. O
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