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3 The Test Ideal

In this section, all rings are domains essentially finite type over a perfect field
k of characteristic p > 0.

3.1 Test ideals of map-pairs

We begin by defining an ideal that caputes information about the ring R and an
R-module homomorphism. For φ ∈ HomR(R1/pe , R), let τ(R,φ) be the smallest
nonzero ideal J such that φ(J1/pe) ⊆ J . It is nonobvious that such an ideal
exists, but we will have a method of constructing it. If an ideal I ⊆ R is such
that φ(I1/p

e

) ⊆ I, we say that I is φ-compatible.

Exercise 3.3. φ(τ(R,φ)
1/pe

) = τ(R,φ).

Solution. By definition, τ(R,φ) is φ-compatible, so φ(τ(R,φ)
1/pe

) ⊆ τ(R,φ).
Applying F e∗ and then φ to both sides, we get that

φ((φ(τ(R,φ)
1/pe

))
1/pe

) ⊆ φ(τ(R,φ)
1/pe

),

proving that φ(τ(R,φ)
1/pe

) is φ-compatible. Hence τ(R,φ) ⊆ φ(τ(R,φ)
1/pe

),
and so the two are equal.

Exercise 3.4. Suppose that φ : R1/pe → R is surjective. Then τ(R,φ) is
radical and R/τ(R,φ) is F -pure.

Solution. Suppose x ∈ R such that xp
e ∈ τ(R,φ). Then since φ is surjective,

x ∈ x·φ
(
R1/pe

)
= φ

(
x ·R1/pe

)
= φ

(
(xp

e

R)
1/pe

)
⊆ φ

(
τ(R,φ)

1/pe
)

= τ(R,φ).
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Now for any n ≥ 1, suppose xn ∈ τ(R,φ). Then n < pec for some c ∈ N, and

so xp
ec ∈ τ(R,φ), which implies that xp

e(c−1) ∈ τ(R,φ), and proceeding for c

steps, x = xp
e·0 ∈ τ(R,φ), and so τ(R,φ) is radical.

Let d ∈ R such that φ(d1/p
e

) = 1. Let ψ : R1/pe → R/τ(R,φ) be given by

φ(r1/p
e

) = φ((dr)
1/pe

) + τ(R,φ). Since φ((dτ(R,φ))
1/pe

) ⊆ τ(R,φ), we have

that τ(R,φ)
1/pe ⊆ kerψ. Therefore we can construct ψ̄ : R1/pe/τ(R,φ)

1/pe →
R/τ(R,φ) given by ψ̄(r1/p

e

+ τ(R,φ)
1/pe

) = ψ(r1/p
e

). Now

ψ̄(11/p
e

+ τ(R,φ)
1/pe

) = ψ(11/p
e

) = φ(d1/p
e

) = 1 + τ(R,φ).

Therfore ψ̄ is an F -splitting for R/τ(R,φ).

Exercise 3.5. Suppose that R = F2[x, y], then R1/2 = R⊕R ·x1/2⊕R · y1/2⊕
R · (xy)1/2.

Part a) Let α : R1/2 → R be given by α((xy)1/2) = 1 and α(1) = α(x1/2) =
α(y1/2) = 0. Then τ(R,α) = R.

Solution. For a monomial xmyn ∈ R, α(xmyn) is x(m−1)/2y(n−1)/2 (with degree
m+n

2 −1) if m and n are odd and 0 otherwise. In particular, if f 6= 0 has degree

d, then α(f1/2) is either zero or nonzero of degree less than or equal to d
2−1 < d.

Let J be a nonzero ideal of R and let f ∈ J be a nonzero polynomial in J of
minimal degree d.

If α(f1/2) 6= 0, then α(f1/2) is of degree less than the degree of f , so is not
in J , hence J is not α-compatible.

If α(f1/2) = 0, then all terms of f are of the form xmyn with m and n not
both odd. Therefore either xf , yf , or xyf has a term with the powers on x and
y both odd, call such a multiple g. Then g ∈ J , α(g1/2) 6= 0, and the degree of
g is at most d+ 2. Therefore α(g1/2) has degree at most d+2

2 − 1 = d
2 . If d > 0,

then d
2 < d and so α(g1/2) /∈ J , so J is not α-compatible. If d = 0, then f is a

constant and J = R. Therefore the only nonzero α-compatible ideal of R is R,
and so τ(R,φ) = R.

Part b) Let β : R1/2 → R be given by β(x1/2) = 1 and β(1) = β(y1/2) =
β((xy)1/2) = 0. Then τ(R, β) = (y).

Solution. For a monomial xmyn ∈ R, β(xmyn) is x(m−1)/2yn/2 (with degree
m+n−1

2 ) if m is odd and n is even and 0 otherwise. In particular, if f 6= 0 has

degree d, then β(f1/2) is either zero or nonzero of degree at most d−1
2 < d. Let

J be a nonzero ideal of R and let f ∈ J be a nonzero polynomial in J of minimal
degree d.

If β(f1/2) 6= 0, then β(f1/2) is of degree less than the degree of f , so is not
in J , hence J is not β-compatible.

If β(f1/2) = 0, then all terms of f are of the form xmyn with either m even
or n odd. Therefore either xf , yf , or xyf has a term with the power on x odd
and the power on y even.
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Suppose that xf or yf has some term with the power on x odd and the
power on y even and call this multiple g. Then g ∈ J , β(g1/2) 6= 0, and the
degree of g is d+ 1. Therefore β(g1/2) has degree at most d+1−1

2 = d
2 . If d > 0,

then d
2 < d and so β(g1/2) /∈ J , so J is not β-compatible. If d = 0, then f is a

constant and J = R.
Now suppose that neither xf or yf has some term with the power on x odd

and the power on y even. Then every term of f must have even power on x
and odd power on y. In this case xyf has all terms with the power on x even
and the power on y odd, call this multiple g. Then the degree of g is d + 2.
Then β(g1/2) has degree at most d+2−1

2 = d+1
2 . If d > 1, then d+1

2 < d, and

so β(g1/2) /∈ J , so J is not β-compatible. If d = 1, then since every power of
f must have even power on x and odd power on y we must have that f = y.
Therefore if J is a proper β-compatible ideal then J must contain y.

We finish by showing that (y) is β-compatible. Suppose f ∈ (y). Then the
terms of f1/2 that are not killed by β are the ones that have odd degree in x
and the even degree at least 2 in y, call the sum of the terms of this form g.
Then we can write g = y2h for some h ∈ F2[x, y]. So β(f1/2) = β((y2h)1/2) =
β(y · h1/2) = yβ(h1/2) ∈ (y). So (y) is β-compatible.

Therefore τ(R, β) = (y).

Part c) Let γ : R1/2 → R be given by γ(11/2) = 1 and β(x1/2) = β(y1/2) =
β((xy)1/2) = 0. Then τ(R, γ) = (xy).

Solution. For a monomial xmyn ∈ R, γ(xmyn) is xm/2yn/2 (with degree m+n
2 )

if m and n are even and 0 otherwise. In particular, if f 6= 0 has degree d, then
γ(f1/2) is either zero or nonzero of degree at most d

2 . Let J be a nonzero ideal
of R and let f ∈ J be a nonzero polynomial in J of minimal degree d.

If γ(f1/2) 6= 0, then γ(f1/2) is of degree d
2 . If d > 0, then this is less than

the degree of f , so γ(f1/2) is not in J , hence J is not γ-compatible. If d = 0,
then f is a constant, so J = R.

If γ(f1/2) = 0, then all terms of f are of the form xmyn with m and n not
both even. Therefore either xf , yf , or xyf has a term with the powers on x
and y both even.

Suppose that xf or yf has some term with the powers on x and y both
even and call this multiple g. Then g ∈ J , γ(g1/2) 6= 0, and the degree of g is
d + 1. Therefore γ(g1/2) has degree at most d+1

2 . If d > 1, then d
2 < d and so

γ(g1/2) /∈ J , so J is not γ-compatible. If d = 1, then f = x or f = y, and so
xy ∈ J . The case d = 0 is impossible.

Now suppose that neither xf or yf has some term with the powers on x and
y both even. Then every term of f must have odd powers on x and y. In this
case xyf has all terms with the powers on x and y both even, call this multiple
g. Then the degree of g is d+2, and γ(g1/2) has degree at most (in fact exactly)
d+2
2 . If d > 2, then d+1

2 < d, and so γ(g1/2) /∈ J , so J is not β-compatible. The
cases d = 0 and d = 1 are impossible. If d = 2, then since every power of f
must have odd powers on x and y we must have that f = xy. Therefore if J is
a proper γ-compatible ideal then J must contain xy.

3



We finish by showing that (xy) is γ-compatible. Suppose f ∈ (xy). Then
the terms of f1/2 that are not killed by γ are the ones that have even degrees at
least 2 in x and y, call the sum of the terms of this form g. Then we can write
g = x2y2h for some h ∈ F2[x, y]. So γ(f1/2) = γ((x2y2h)1/2) = γ(xy · h1/2) =
xyγ(h1/2) ∈ (xy). So (xy) is γ-compatible.

The question of whether such an ideal τ(R,φ) exists is answered in the
affirmative by Lemma 3.6 and Theorem 3.8.

Lemma 3.6. Suppose that φ : R1/p → R is a nonzero R-module homomor-
phism. Then there exists nonzero c ∈ R such that for all nonzero d ∈ R, there
exists n > 0 such that c ∈ φn

(
(dR)1/p

ne)
.

In the above lemma, φn is the composition

R1/pne φ1/p(n−1)e

−−−−−−−−→ R1/p(n−1)e φ1/p(n−2)e

−−−−−−−−→ · · ·
φ1/pe

−−−−−−−−→ R1/pe
φ

−−−−−−−−→ R.

We call an element c satisfying the conditions of Lemma 3.6 a test element for
φ.

Theorem 3.8. Fix any c ∈ R a test element for φ. Then

τ(R,φ) =
∑
e≥0

φn
(

(cR)1/p
ne
)

Here, by φ0 we mean the identity map R→ R.

Proof. Let T =
∑
e≥0 φ

n
(
(cR)1/p

ne)
. Now φ(T 1/p) =

∑
e≥1 φ

n
(
(cR)1/p

ne)
, so

T is φ-compatible. If I is any φ-compatible ideal, then there exists a nonzero
d ∈ I, and so since c satisfies the condition of Lemma 3.6, there exists n ∈ N
such that c ∈ φn((dR)1/p

ne

). But also,

φn
(

(dR)1/p
ne
)
⊆ φn

(
I1/p

ne
)
⊆ φn−1

(
I1/p

(n−1)e
)
⊆ · · · ⊆ φ

(
I1/p

e
)
⊆ I,

and so c ∈ I. But then for any n ∈ N, φn
(
(cR)p

ne) ⊆ φn
(
I1/p

ne) ⊆ I as
above. Therefore T ⊆ I. Therefore T is the smallest φ-compatible ideal of R,
i.e. T = τ(R,φ).

Exercise 3.9. τ(R,φ) = τ(R,φm) for any m > 0.

Solution. Let c ∈ R be a test element for φm. Let 0 6= d ∈ R, and choose n > 0
such that c ∈ (φm)n

(
(dR)1/p

mne)
= φmn

(
(dR)1/p

mne)
. Therefore c is a test

element for φ.
We have that

τ(R,φ) =
∑
e≥0

φn
(

(cR)1/p
ne
)

and τ(R,φm) =
∑
e≥0

φmn
(

(cR)1/p
mne
)
.
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Since every term in the sum for τ(R,φm) is also a term of the sum for τ(R,φ),
we have that τ(R,φm) ⊆ τ(R,φ).

We claim that for all n, φn((cR)1/p
ne

) contains a nonzero element. Let k ∈ N
such that c ∈ φk((cR)

1/pe
). Then

cR ⊆ φk((cR)
1/pe

) ⊆ φ2k((cR)1/p
2k

) ⊆ · · · ,

so for any j ∈ N, c ∈ φkj((cR)1/p
kje

) and so φkj((cR)1/p
kje

) 6= 0. Now for any
n ∈ N, there exists j ∈ N such that kj > n, and so since

0 6= φkj((cR)1/p
kje

= φkj−n
(

(φn)1/p
(kj−n)e

((cR)1/p
ne

)
)
,

we must have that φn((cR)1/p
ne

) 6= 0.

Therefore we can pick 0 6= dj ∈ φj((cR)/1p
je

) for j = 1, 2, . . . ,m. Let

d =
∏
i di. Then d ∈ φj((cR)/1p

je

) for j = 1, 2, . . . ,m. Let n ∈ N, and

choose k ∈ N such that c ∈ φk((dR)1/p
ke

. Then pick j in {1, . . . ,m} such that
n+ k + j ≡ 0 mod m. Now

φn((cR)1/p
ne

) ⊆ φn+k((dR)1/p
(nk)e

) ⊆ φn+k+j((cR)1/p
(n+k+j)e

,

but the term on the right is a summand of τ(R,φm). Therefore φn((cR)1/p
ne

) ⊆
τ(R,φm), and since n was arbitrary, this shows that τ(R,φ) ⊆ τ(R,φm).

Exercise 3.10. If W is a multiplicative system of R and φ ∈ HomR(R1/pe , R),
then τ(W−1R,W−1φ) = W−1τ(R,φ).

Solution. Let c ∈ R be a test element for φ. Let 0 6= d
u ∈ (W−1R). Then d 6= 0,

and so there exists n ∈ N such that c ∈ φn((dR)1/p
ne

). Then

(W−1φ)n

((
d

u
·W−1R

)1/pne)
=(W−1φ)n

((
W−1(dR)

)1/pne)
=(W−1φ)n

(
W−1 (dR)

1/pne
)

=W−1φn
(

(dR)
1/pne

)
3 c

1
.
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Therefore c
1 is a test element for W−1. Hence,

τ(W−1R,W−1φ) =
∑
n≥0

(W−1φ)n
(( c

1
·W−1R

)1/pne)
=
∑
n≥0

(W−1φ)n
(
W−1 (cR)

1/pne
)

=
∑
n≥0

W−1φn
(

(cR)
1/pne

)
= W−1

∑
n≥0

φn
(

(cR)
1/pne

)
= W−1τ(R,φ).

Exercise 3.11. Let c be a test element for φ ∈ HomR(R1/pe , R), let J0 = cR

and for n ≥ 1, Jn = Jn−1 + φ(J
1/pe

n−1 ). Then for n� 0, Jn = τ(R,φ).

Solution. Note that the chain of ideals J0 ⊆ J1 ⊆ · · · is increasing. Therefore,
since R is noetherian, Jn = Jn+1 = · · · for some n > 0. Therefore Jn =

Jn + φ(Jn
1/pe) and therefore φ(J

1/pe

n ) ⊆ Jn, i.e. Jn is φ-compatible. Hence
Jn ⊇ τ(R,φ).

Now J0 = cR ⊆ τ(R,φ), and τ(R,φ) is φ-compatible. If Jk ⊆ τ(R,φ), then

Jk+1 = Jk + φ(J
1/pe

k ) ⊆ τ(R,φ) + φ(τ(R,φ)
1/pe

) = τ(R,φ).

Therefore, by induction, Jn ⊆ τ(R,φ), and so Jn = τ(R,φ).

3.2 Test ideals of rings

We can define an ideal depending only on the ring structure of R by simul-
taineously considering all homomorphisms φ ∈ HomR(R1/pe , R). To be precise,
we define the test ideal of R, denoted τ(R), to be the smallest nonzero ideal J
such that J ⊆ φ(J1/pe) for all e ≥ 0 and φ ∈ HomR(R1/pe , R).

Exercise 3.13. If S = k[x1, . . . , xn], then τ(S) = S.

Solution. We will show that if J is any nonzero ideal of S then there exists
e ≥ 0 and φ ∈ HomR(R1/pe , R) such that φ(J1/pe) = S, which will prove the
statement. Let J be a nonzero ideal of S, and let 0 6= f ∈ J . Choose e > 0 such
that pe is greater than the highest power of any single variable that appears

in f . By exercise 2.1, S1/pe is a free S-module with basis x
λ1/p

e

1 · · ·xλn/p
e

n for
0 ≤ λi ≤ pe − 1. Then the monomials of f1/p

e

are S-linearly independent
in S1/pe . Choose an exponenet vector (`1, . . . , `n) such that the coefficient of

x`11 · · ·x`nn is a` 6= 0. Let φ : S1/pe → S be given by φ(x
`1/p

e

1 · · ·x`n/p
e

n ) = 1
a`

and φ(x
λ1/p

e

1 · · ·xλn/p
e

n ) = 0 for (λ1, . . . , λn) 6= (`1, . . . , `n). Then φ(f1/p
e

) = 1,
and so φ(J1/pe) = S.
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We have an explicit construction of τ(R) as we did for τ(R,φ).

Theorem 3.14. Fix any φ ∈ HomR(R1/pe , R) and c a test element for φ. Then

τ(R) =
∑
e≥0

∑
ψ∈HomR(R1/pe ,R)

ψ
(

(cR)
1/pe

)
.

Proof. Let J be any nonzero ideal of R for which ψ(J1/pe) ⊆ J for all e ≥ 0
and ψ ∈ HomR(R1/pe , R). Let 0 6= d ∈ J , then there exists n ∈ N such that

c = φn
(

(dR)1/p
ne
)
⊆ φn

(
J1/pne

)
⊆ J.

Therefore c ∈ J , and so∑
e≥0

∑
ψ∈HomR(R1/pe ,R)

ψ
(

(cR)
1/pe

)
⊆
∑
e≥0

∑
ψ∈HomR(R1/pe ,R)

ψ
(
J1/pe

)
⊆
∑
e≥0

∑
ψ∈HomR(R1/pe ,R)

J

=J

Therefore the given sum is indeed τ(R).

Exercise 3.15. For any multiplicative system W of R, τ(W−1R) = W−1τ(R).

Solution. As in exercise 3.10, for a fixed e ≥ 0 and φ ∈ HomR(R1/pe , R), if c is a

test element for φ then c
1 is a test element forW−1φ ∈ HomW−1R((W−1R)

1/pe
,W−1R).

Let H = HomW−1R((W−1R)
1/pe

,W−1R). Then

τ(W−1R) =
∑
e≥0

∑
W−1ψ∈H

(W−1ψ)

(( c
1
·W−1R

)1/pe)
=
∑
e≥0

∑
W−1ψ∈H

(W−1ψ)
(
W−1(cR)

1/pe
)

=
∑
e≥0

∑
ψ∈HomR(R1/pe ,R)

W−1ψ
(

(cR)
1/pe

)
= W−1

∑
e≥0

∑
ψ∈HomR(R1/pe ,R)

ψ
(

(cR)
1/pe

)
= W−1τ(R).

Exercise 3.17. Suppose that R is F -pure. Then τ(R) is radical and R/τ(R)
is F -pure.
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Solution. There exists a splitting φ : R1/p → R of the inclusion R ⊆ R1/p.
Suppose that x ∈ R such that x1/p ∈ τ(R). Then

x = φ((xp)
1/p

) ⊆ φ(τ(R)
1/p

) ⊆ τ(R).

Therefore τ(R) is radical.
Define ψ : R1/p → R/τ(R) by ψ(r1/p) = φ(r1/p) + τ(R). Then r1/p ∈

kerψ if and only if φ(r1/p) ∈ τ(R), and so we have that kerψ ⊇ τ(R)
1/p

since

φ(τ(R)
1/p

) ⊆ τ(R). Therefore we can construct ψ̄ : R1/p/τ(R)
1/p → R/τ(R) as

ψ̄(r1/p + τ(R)
1/p

) = ψ(r1/p). Now

ψ̄(11/p + τ(R)
1/p

) = ψ(11/p) = φ(11/p) + τ(R) = 1 + τ(R),

so ψ̄ is an F -splitting of R/τ(R).

Exercise 3.18. Suppose R is reduced and let RN be its normalization. Let c
be the conductor of R in RN , that is, c = AnnR(RN/R) = (R :R RN ) (c can
also be described as the largest ideal of RN which is also an ideal of R). Then
τ(R) ⊆ c.

Solution. Let e ≥ 0 and φ ∈ HomR(R1/pe , R). Take r
s ∈ R

N and x ∈ c. Then r
s

has an equation of integral dependence(r
s

)n
+ a1

(r
s

)n−1
+ · · ·+ an−1

(r
s

)
+ an = 0

with ai ∈ R. Raising this to the peth power gives us an equation of integral

dependence for
rp

e

spe
:

(
rp

e

spe

)n
+ ap

e

1

(
rp

e

spe

)n−1
+ · · ·+ ap

e

n−1

(
rp

e

spe

)
+ ap

e

n = 0.

Since x ∈ (R :R R
N ), we have that

xrp
e

spe
∈ R, i.e. xrp

e

= x′sp
e

for some x′ ∈ R.

Therefore,

φ(x1/p
e

)
r

s
= φ((xrp

e

)
1/pe

)
1

s
= φ((x′sp

e

)
1/pe

)
1

s
= φ(x′

1/pe
)
s

s
= φ(x′

1/pe
) ∈ R

Therefore φ(x1/p
e

) ∈ c, hence φ(c1/p
e

) ⊆ c, i.e. c is φ-compatible, and so we
have that c ⊇ τ(R).

The result of the computation in Exercise 3.13 can be extended to a charac-
terization of when τ(R) = R:

Theorem 3.19. Suppose R is a domain essentially of finite type over a perfect
field k. Then τ(R) = R if and only if for every 0 6= c ∈ R, there exists e ≥ 1
and φ ∈ HomR(R1/pe , R) such that φ(c1/p

e

) = 1.
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The paper leaves only one step to us: to reduce to the case where R is
local. Consider the R-module R/τ(R). This module is 0 (i.e. τ(R) = R) if
and only if (R/τ(R))m = 0 for all maximal ideals m of R. However, since
(R/τ(R))m ∼= Rm/τ(R)m ∼= Rm/τ(Rm), it suffices to consider the case where R
is a local ring with maximal ideal m.

We call a ring R such that τ(R) = R a strongly F -regular ring.

Theorem 3.21. A regular ring is strongly F -regular.

Exercise 3.22. A strongly F -regular ring is Cohen-Macaulay

Exercise 3.23. Suppose that R ⊆ S is a split inclusion of normal domains
and S is strongly F -regular. Then R is strongly F -regular and hence Cohen-
Macaulay.

Solution. Let s : S → R be a splitting map for the inclusion R ⊆ S. Let
0 6= c ∈ R. Then 0 6= c ∈ S, and so since S is strongly F -regular, there
exists φ ∈ HomS(S1/pe , S) such that φ(c1/p

e

) = 1. Since φ is an S-module
homomorphism it is also an R-module homomorphism, so the map φ|R1/pe ∈
HomR(R1/pe , S) is an R-module homomorphism. Now let ψ = s◦φ|R1/pe . Then
ψ ∈ HomR(R1/pe , R) and ψ(c1/p

e

) = 1. Therefore R is strongly F -regular. By
Exercise 3.22, then, R is Cohen-Macaulay.

3.3 Test ideals in Gorenstein local rings

Exercise 3.26. Suppose that S = k[x1, . . . , xn], where k is a perfect field, and
consider the S-linear map Ψ : S1/pe → S sending (x1 · · ·xn)(p

e−1)/pe to 1 and
all other basis elements (xλ1

1 · · ·xλn
n )1/p

e

, 0 ≤ λi ≤ pe − 1 to zero. Then Ψ
generates HomS(S1/pe , S) as an S1/pe -module.

Note! There is a typo in the original paper, which states that Ψ generates
HomS(S1/pe , S) as an S-module, which can easily be shown false.

Solution. Let φ ∈ HomS(S1/pe , S). Then for every tuple (λ1, . . . , λn) with 0 ≤
λi ≤ pe − 1, there exists a(λ1, . . . , λn) ∈ S such that φ takes the basis element
(xλ1

1 · · ·xλn
n )1/p

e

to a(λ1, . . . , λn). We claim that

φ =
∑

0≤λi≤pe−1

(
a(λ1, . . . , λn)p

e

xp
e−1−λ1

1 · · ·xp
e−1−λn
n

)1/pe
·Ψ.

Recall that the action of S1/pe on HomS(S1/pe , S) is by premultiplication;
that is, for s1/p

e ∈ S1/pe and ϕ ∈ HomS(S1/pe , S), we have that s1/p
e · ϕ ∈

HomS(S1/pe , S) is given by (s1/p
e · ϕ)(x1/p

e

) = ϕ(s1/p
e

x1/p
e

) = ϕ((sx)
1/pe

).
We now prove the above equality by checking that they act equivalently on
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basis elements. Let (λ∗1, . . . , λ
∗
n) be a tuple with 0 ≤ λi ≤ pe − 1. Then ∑

0≤λi≤pe−1

(
a(λ1, . . . , λn)p

e

xp
e−1−λ1

1 · · ·xp
e−1−λn
n

)1/pe
·Ψ

((x
λ∗
1

1 · · ·x
λ∗
n
n )

1/pe
)

=
∑

0≤λi≤pe−1

Ψ

((
a(λ1, . . . , λn)p

e

x
pe−1−λ1+λ

∗
1

1 · · ·xp
e−λn+λ

∗
n

n

)1/pe)

=
∑

0≤λi≤pe−1

a(λ1, . . . , λn)Ψ

((
x
pe−1−λ1+λ

∗
1

1 · · ·xp
e−λn+λ

∗
n

n

)1/pe)

By construction, the term Ψ

((
x
pe−1−λ1+λ

∗
1

1 · · ·xp
e−λn+λ

∗
n

n

)1/pe)
is nonzero if

and only if each pe − 1 − λi + λ∗i is congruent to pe − 1 modulo pe. Since
0 ≤ λi, λ

∗
i ≤ pe − 1, we have that 0 ≤ pe − 1 − λi + λ∗i ≤ 2pe − 2. Therefore

this term is nonzero exactly when pe − 1− λi + λ∗i = pe − 1, i.e. when λi = λ∗i .
Therefore ∑

0≤λi≤pe−1

a(λ1, . . . , λn)Ψ

((
x
pe−1−λ1+λ

∗
1

1 · · ·xp
e−λn+λ

∗
n

n

)1/pe)

=a(λ∗1, . . . , λ
∗
n)Ψ

((
xp

e−1
1 · · ·xp

e−1
n

)1/pe)
=a(λ∗1, . . . , λ

∗
n)

=φ

(
(x
λ∗
1

1 · · ·x
λ∗
n
n )

1/pe
)
.

Therefore the claim is proved, and so Ψ generates HomS(S1/pe , S) as an S1/pe-
module. By Lemma 3.24, ΦeS also generates HomS(S1/pe , S) as an S1/pe -module.
Also,

HomS(S1/pe , S) ∼= HomS(S1/pe , ωS) ∼= (ωS)
1/pe ∼= S1/pe ,

and so we have that HomS(S1/pe , S) is a faithful cyclic module. Since any two
generators of a faithful cyclic module differ by a unit, we have that Ψ and ΦeS
are identical up to multplication by a unit in S1/pe .
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